skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Melancon, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Accurate identification of inundated areas is crucial for mitigating the impacts of flooding, which causes numerous casualties and significant economic losses. While polarimetric synthetic aperture radar (PolSAR) data have been utilized to detect inundated regions, the information contained within PolSAR features remains severely underutilized. We introduce a novel approach that involves extracting a large number of PolSAR features through various PolSAR decomposition techniques, selecting the most important ones using the decision tree–recursive feature elimination (DT-RFE) method, and ultimately detecting inundation using a convolutional neural network (CNN) model. The hybrid DT-RFE–CNN model was trained and tested over a region in southeastern North Carolina during Hurricane Florence on September 18, 2018, using PolSAR features derived from the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). In terms of flood-mapping efficacy, the DT-RFE–CNN model outperformed a CNN model that used only PolSAR data across all metrics in both the training and testing stages. The performance of the trained DT-RFE–CNN model was evaluated by testing it over the same region for four more days (September 19, 20, 22, and 23, 2018); it achieved an average accuracy, precision, recall, F1 score, and intersection-over-union of 0.9304, 0.9089, 0.9584, 0.9324, and 0.8738, respectively, outperforming both the classical Otsu method and the FT-Transformer model using features selected by DT-RFE. Finally, we assessed the model’s generalizability by mapping another significant flood event, caused by Hurricane Harvey in Texas between August and September 2017. Based on the results, the hybrid model can accurately detect flooding, even in regions on which it has not been trained. Thus, the proposed method can facilitate flood monitoring and response efforts. 
    more » « less
    Free, publicly-accessible full text available July 17, 2026